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A useful approach for long range computation of the Helmholtz equation in a
waveguide is to re-formulate it as the operator differential Riccati equation for the
Dirichlet-to-Neumann map. For waveguides with slow range dependence, the piece-
wise range-independent approximation is used to derive a second-order range step-
ping method for this one-way re-formulation. The range marching formulas are exact
for each range-independent piece and a large range step is possible if the range depen-
dence is gradual. Based on a fourth-order conservative exponential method for linear
evolution equations, a fourth-order method that admits even larger range steps is de-
veloped for the one-way re-formulation. Numerical examples are used to demonstrate
the improved accuracy of the fourth-order method.c© 1999 Academic Press

1. INTRODUCTION

For acoustic, electro-magnetic, and seismic wave propagation problems of practical in-
terest, it is often necessary to solve the governing equation in a domain that has length scales
much larger than the typical wavelength. Very often, boundaries and different medium prop-
erties lead the waves to propagate in some preferred direction. The length scale along the
waveguide is typically very large. The transverse length scale is much smaller, but still much
larger than the characteristic wavelength. For example, the ocean surface and the relatively
slow speed of sound in water (compared with the seabed) effectively force the sound waves
to propagate in horizontal directions. Low-frequency sound waves in the ocean could travel
hundreds and even thousands of kilometers in the horizontal (i.e., range) direction.

Standard numerical techniques such as the finite difference and finite element methods
lead to a system of equations with a very large number of unknowns and are not very practical
for these large-scale problems. The boundary integral equation method [7, 27] can be very
useful when it is applicable, but it is restricted to cases in which the medium properties
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are constants. Fortunately, for many long range wave propagation problems, the medium
properties have very gradual variations in the main propagation direction. The purpose of
this paper is to develop an efficient numerical method for Helmholtz waveguides by taking
advantage of this feature.

Consider the simple model of a 2-dimensional Helmholtz equation

uxx + uzz+ κ2(x, z)u = 0 (1)

in the strip 0< z< 1, wherex is the range variable (for the main propagation direction).
Homogeneous andx-independent boundary conditions are assumed atz= 0 andz= 1.
Furthermore, the wavenumberκ is x-independent forx≤ 0 andx≥ L, for someL. A
radiation condition is imposed atx= L so that only waves propagating towards+∞ are
allowed forx> L. Our problem is characterized by the existence of three distinct length
scales

1

κ
¿ 1¿ L .

Namely, the typical wavelengthO(1/κ) is much smaller than the transverse length scale
(normalized as 1), which is still much smaller than the range distanceL. We also assume
that the dependence ofκ on the range variablex is gradual in the sense that the variation of
κ over a typical wavelength is small compared withκ itself.

Exact one-way re-formulations [9, 21] turn the Helmholtz equation boundary value prob-
lem into “initial” value problems with the range variablex (along the waveguide) acting as
the usual “time” variable. A simple one-way re-formulation is based on the Dirichlet-to-
Neumann (DtN) map. Letu be an arbitrary solution of the Helmholtz equation satisfying the
boundary conditions atz= 0 andz= 1, and the radiation condition atx= L. The DtN op-
eratorQ(x)mapsu (at a fixedx, as a function ofz) to itsx derivative. We haveux = Q(x)u
and

d Q

dx
= −[∂2

z + κ2(x, z)
]− Q2. (2)

A numerical implementation for such a one-way re-formulation requires relatively little
computer memory (since it is independent ofL). Meanwhile, the total computation time is
linearly proportional toL. For long range waveguide problems whereLÀ 1, the one-way
re-formulations are particularly useful.

Notice that the DtN map is often associated with the exact boundary condition at an
artificial boundary introduced to truncate the original unbounded domain [12, 13, 22, 15,
23]. As a special case, the radiation condition here can be given atx= L (sinceκ is x-
independent forx≥ L) as ux = Q(L)u, where Q(L)= i

√
∂2

z + κ2(L , z) for a properly
defined square root operator. In this paper, the DtN map is not just used for an artificial
boundary condition, it is defined at different values ofx and used as the main tool for solving
the Helmholtz equation.

The main objective of this paper is to develop numerical methods for discretizing the
Riccati equation (2), such that a large step size can be used when thex dependence ofκ is
weak. In a step whereκ is x-independent, our methods reproduce the exact relationships
between the operators at the two end points of the step. For the generalx-dependent case,
a second-order method is derived based on approximatingκ in each step by its value at the
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midpoint (still a function ofz). We also develop a fourth-order “large range step” method
based on a fourth-order method for linear evolution equations.

In Section 2, we present the necessary background of exact one-way re-formulations of
the Helmholtz equation and compare them with the related approximate one-way Helmholtz
equation. A second-order method is derived in Section 3. The operator formulas of Section 3
are further discretized with two methods in Section 4. The full matrix approach approximates
the operators by matrices directly based on a fourth-order finite difference method for the
z variable. A more efficient approach is to use the truncated local eigenfunction expansion
where the operators are represented by matrices of much smaller sizes. A fourth-order large
range step method is presented in Section 5. Numerical examples are given in Section 6 to
illustrate the capacity of the methods. Finally, we end this paper with some conclusions in
Section 7.

2. ONE-WAY RE-FORMULATIONS

Fishman [9] first developed a one-way re-formulation based on wave-field decomposition
and the scattering operators. The wave field is decomposed asu= u(+)+ u(−) and the
conditionux = i B(x)[u(+)− u(−)] is required, whereB(x)=√∂2

z + κ2(x, z) is the square
root operator which can be defined based on the eigenvalues and eigenfunctions of the
transverse operator∂2

z + κ2 (see, for example, [21]). The one-way re-formulation based
on the DtN map is simpler [10, 11, 21, 14]. Substitutingux = Q(x)u into the Helmholtz
equation, we have [

d Q

dx
+ Q2+ ∂2

z + κ2(x, z)

]
u = 0.

Since the above is true for any solution of the Helmholtz equation (satisfying the boundary
conditions atz= 0 andz= 1, and the radiation condition atx= L), we obtain Eq. (2) forQ.

Numerical computation for the above re-formulation was reported in [21]. This re-
formulation is an example of the invariant imbedding or Riccati method for two point
boundary value problems of ordinary differential equations [2], with the only difference
being that the matrices are replaced by operators. The Riccati equation forQ should be
solved for decreasingx with an initial condition that matches the exact radiation condition
at+∞. Sinceκ(x, z) does not depend onx for x≥ L, the initial condition ofQ can be given
at x= L asQ(L)= i

√
∂2

z + κ2(L , z). The reflection operator atx= 0 can be constructed
from Q(0), leading to the solution of back-scattered waves for given incident waves from
−∞. To find the wave field forx> 0, a naive approach is to use the “evolution” equation
ux = Q(x)u in a second sweep. This is not practical sinceQ must be remembered for all
x. For stability reasons, (2) cannot be solved for increasingx to reproduce the solution
obtained in the first sweep. This difficulty can be avoided by introducing the fundamental
solution operatorY satisfyingY(x)u(x, z)= u(L , z) and

dY

dx
= −Y Q. (3)

The modified first sweep is now to solveQ andY together fromx= L to x= 0. The initial
condition atx= L is Y(L)= I , whereI is the identity operator. WhenY(0) is calculated,
the solution atx= L can be generated by a simple multiplication with the “starting field”
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u(0, z), namely,

u(L , z) = Y(0)u(0, z).

The approach can be further modified to find the solutions at other selected range locations
[21]. This re-formulation produces the exact solution of the Helmholtz equation and can be
used for arbitrary range dependence. The numerical procedure requiresO(n3) operations
for each range step, wheren is the number of points used to discretizez. It is possible
to speed it up toO(m3) operations, wherem is the number of modes used in a local
eigenfunction expansion. Usually,m is slightly larger than the number of propagating
modes in the waveguide. When a typical finite difference method is used for discretizingz,
we haven≈ 10m.

In [21], for the step fromx1 to x0= x1− h, the numerical scheme replacesd Q/dx at the
midpoint x1/2= (x0+ x1)/2 by (Q1− Q0)/h and approximates the Riccati equation for
x0< x< x1 by

Q1− Q0

h
= −1

2
(Q0Q1+ Q1Q0)−

[
∂2

z + κ2(x1/2, z)
]
, (4)

whereQj ≈ Q(xj ). This is a second-order method and a small range step sizeh is necessary
even in a range-independent region. In this paper, we develop large range step methods for
the DtN re-formulation to take advantage of the weak range dependence of the waveguide.
The method developed in Section 3 also approximatesκ(x, z) on the interval(x0, x1) by
κ(x1/2, z), but it finds the exact solution of the equation

d Q

dx
= −Q2− [∂2

z + κ2(x1/2, z)
]
.

If κ happens to bex-independent on the interval(x0, x1), this method produces no error in
this step. Therefore, whenκ varies withx slowly, we can use a step size larger than that
used with the method based on (4), for a given required accuracy. The method developed
in Section 5 allows us to use even larger range steps. It is a fourth-order method for the
generalx-dependentκ and it still gives exact solutions whenκ is x-independent.

Before we proceed to develop numerical methods for the operator equations (2) and
(3), it is worthwhile to compare our approach with the widely usedapproximateone-way
methods. For weakly range-dependent waveguides, under the assumption that the wave field
is dominated by the outgoing component (towards+∞), the Helmholtz equation is often
approximated by the following one-way Helmholtz equation,

ux ≈ i
√
∂2

z + κ2(x, z)u. (5)

A large class of “parabolic” equations [17, 16, 18, 26, 28, 3, 5, 6] are further approximations
of (5). The exact evolution equation should beux = Q(x)u, whereQ satisfies the Riccati
equation (2). Thus, Eq. (5) is the result ofQ(x)≈ i

√
∂2

z + κ2(x, z), say obtained from (2)
by ignoring the termd Q/dx. Whenκ is x-independent, (5) is truly valid. However, this
range-independent problem is not difficult, since it can be simply solved by the method
of separation of variables. When (5) is used for weakly range-dependent problems, it of-
ten gives useful approximations to the outgoing component of the wave field. The main
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advantage of (5) and its further approximations is that they can be solved efficiently by
marching forward inx. However, when the one-way Helmholtz equation is used in a long
range calculation, the accuracy is questionable, even when the range dependence is weak.
On the contrary, the exact one-way re-formulations give exact solutions of the Helmholtz
equation (including the back-scattered waves) in principle. Approximations are introduced
only when the operator equations (say, (2) and (3) forQ andY) are solved numerically.

Despite the differences between theexactone-way re-formulations and theapproximate
one-way Helmholtz equation, there is a common desire to use a large range step size when
they are solved numerically. For the one-way Helmholtz equation, the original approach
[5] is based on the Crank–Nicolson method and a rational approximation of the square
root operator. This second-order method requires a small range step size even for range-
independent problems. On the other hand, consider a typical step fromx0 to x1= x0+ h;
the solution of the one-way Helmholtz equation can be approximated by

u(x1, z) ≈ eih
√
∂2

z+κ2(x1/2,z)u(x0, z). (6)

This formula is exact ifκ(x, z) is x-independent on the interval(x0, x1). Therefore, a large
range step can be used when the range dependence is weak. One possible approach for eval-
uating (6) is to use the eigenvalues and eigenfunctions of the operator∂2

z + κ2(x1/2, z). The
split-step Pad´e method [6] approximates exp{ih√∂2

z + κ2(x1/2, z)} directly by an operator
rational function and it is much more efficient. An alternative method based on higher order
generalizations of the Crank–Nicolson method is presented in [19]. Both these methods
allow a much larger range step in a weakly range-dependent region compared with the
method in [5].

3. PIECEWISE EXACT SOLUTIONS

In this section, we develop a second-order method that approximates the waveguide
by pieces of range-independent segments and uses the exact solutions for each piece for
marchingQ andY in the range. This is similar to the coupled mode method [24, 25, 4,
8, 1], but the one-way re-formulation allows us to avoid the large linear system (for the
coefficients of the modes in all pieces) appearing in the coupled mode method.

On the interval(x0, x1), the Riccati equation forQ is approximated by

Q′ = −Q2− [∂2
z + κ2(x1/2, z)

]
, (7)

wherex1/2= x0+ h/2= (x0+ x1)/2. For a given initial conditionQ1≈ Q(x1), the exact
solution of (7) is used to obtainQ0≈ Q(x0). For this purpose, we explore the relationship
with the Helmholtz equation and consider the associated equation

uxx + uzz+ κ2(x1/2, z)u = 0 (8)

on(x0, x1). Since the interval(x0, x1) corresponds to a range-independent segment, we can
decompose the wave field as right- and left-going waves

u = u(+) + u(−),
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whereu(+) andu(−) satisfy

u(+)x = i B1/2u(+), u(−)x = −i B1/2 u(−),

whereB1/2=
√
∂2

z + κ2(x1/2, z). Let R̃1 be defined by

u(−)(x1, z) = R̃1u(+)(x1, z);

it is easy to obtain fromux(x1, z)= Q1u(x1, z) and the above relationship that

R̃1 = [i B1/2+ Q1]−1[i B1/2− Q1]. (9)

Similarly, we defineR̂0 by

u(−)(x0, z) = R̂0u(+)(x0, z)

and obtain

Q0 = i B1/2[ I − R̂0][ I + R̂0]−1. (10)

Compare the definitions of̃R1 andR̂0 and notice that

u(+)(x1, z) = eihB1/2u(+)(x0, z), u(−)(x1, z) = e−ihB1/2u(−)(x0, z);

we obtain

R̂0 = eihB1/2 R̃1eihB1/2. (11)

The formulas (9), (11), and (10) reveal the exact relationship betweenQ0 andQ1 for Eq. (7).
The fundamental solution operatorY satisfying (3) is introduced to mapu(0, z) tou(L , z).

The initial condition isY(L)= I . On the interval(x0, x1), assuming that the Helmholtz
equation is approximated by (8), we obtainu(x0, z)= (I + R̂0)u(+)(x0, z) and

u(x1, z) = (I + R̃1)u
(+)(x1, z) = (I + R̃1)e

ihB1/2u(+)(x0, z)

= (I + R̃1)e
ihB1/2(I + R̂0)

−1u(x0, z).

Therefore, we have

Y0 = Y1(I + R̃1)e
ihB1/2(I + R̂0)

−1. (12)

Notice thatR̂0 andR̃1 used above do not give a good definition for the reflection operator.
On the interval(x0, x1), we useκ(x1/2, z) to approximateκ(x, z) and decompose the wave
field through the square root operatorB1/2=

√
∂2

z + κ2(x1/2, z). It is appropriate to define
the reflection operator atx1/2, sayR1/2, by

u(−)(x1/2, z) = R1/2u(+)(x1/2, z).
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On the other hand, the grid pointsx0, x1, x2, . . . correspond to discontinuities of the piece-
wise range-independent medium. WhileR̃1 is defined based on the wave-field decompo-
sition in (x0, x1), we must also have an operator, sayR̂1, defined based on a wave-field
decomposition in(x1, x2). Although the total wave fieldu and itsx derivative are ensured
to be continuous atx1, usually,R̃1 6= R̂1. Similarly, the operator̃R0 defined on(x−1, x0) is
not the same aŝR0.

Since the DtN map is closely related to the reflection operators, it is possible to use
the reflection (and transmission) operators in the one-way re-formulation. For a piecewise
range-independent medium, the marching formulas for the scattering operators are given
in [9]. For the case considered here, the desired formulas are for the pair(R̂0, R̂1), or
(R̃0, R̃1), or (R1/2, R3/2). These formulas must involve the square root operator at two
nearby range-independent segments and the continuity ofu andux at an interface must be
explicitly imposed. In the DtN formulation above, the continuity condition is implicit in
the requirement thatQ1 obtained from the previous calculation in(x1, x2) be the sameQ1

used to calculateQ0 in (x0, x1).
A slightly different approach is to approximate the Helmholtz waveguide by piecewise

range-independent segments using the medium values atx0, x1, x2, etc., and derive operator
relationships also at these points. More precisely, we consider

uxx + uzz+ κ2(xj , z)u = 0

for (xj−1/2, xj+1/2), wherexj±1/2= (xj + xj±1)/2. Exact solutions in each segment can be
written down and continuity conditions atxj±1/2 are used to match the solutions.

We start with a wave-field decompositionu= u(+)+ u(−), whereu(+) andu(−) satisfy

u(+)x = i B j u
(+), u(−)x = −i B j u

(−)

on the interval(xj−1/2, xj+1/2), whereBj =
√
∂2

z + κ2(xj , z). At the pointxj , we define the
reflection operatorRj by

u(−)(xj , z) = Rj u
(+)(xj , z).

For j = 0, we write down the solution and itsx derivative atx1/2 as

u(x1/2, z) = eihB0/2u(+)(x0, z)+ e−ihB0/2u(−)(x0, z)

ux(x1/2, z) = i B0
[
eihB0/2u(+)(x0, z)− e−ihB0/2u(−)(x0, z)

]
.

For j = 1, we use the solution on(x1/2, x3/2) and obtain

u(x1/2, z) = e−ihB1/2u(+)(x1, z)+ eihB1/2u(−)(x1, z)

ux(x1/2, z) = i B1
[
e−ihB1/2u(+)(x1, z)− eihB1/2u(−)(x1, z)

]
.

From the continuity ofu andux at x1/2 and the definitions ofR0 and R1, we obtain the
formulas

R0 = eihB0/2(I + T)−1(I − T)eihB0/2, (13)
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where

T = B−1
0 B1(I − X1)(I + X1)

−1 (14)

X1 = eihB1/2R1eihB1/2. (15)

Equation (13) has the more convenient form

X0 = eihB0(I + T)−1(I − T)eihB0, (16)

whereX0= eihB0/2 R0 eihB0/2. The reflection operators are related to the DtN maps through
the formula

i B j (I − Rj )(I + Rj )
−1 = Qj . (17)

This can be easily derived by writing downux(xj , z)= Qj u(xj , z) through the wave-field
decomposition.

Compared with the approach based on the DtN map ((9), (11), and (10)), the method for
marching the reflection operator, based on Eqs. (14) and (16), is slightly more expensive,
since an extra term ofB−1

0 B1 is involved in each step.

4. LOCAL EIGENFUNCTION EXPANSION

When the DtN mapQ and the fundamental solution operatorY are solved fromx= L
to x= 0, formulas (9), (11), (10), and (12) are used in the step fromx1 to x0. For a general
step fromxk+1 to xk, wherek is some integer, the marching formulas follow from (9), (11),
(10), and (12) with a trivial index substitution. In this section, we consider its numerical
implementation.

A direct approach is to approximate the operators by matrices. Let us consider the fol-
lowing boundary conditions for the Helmholtz waveguide,

u(x, 0) = 0, uz(x, 1) = 0.

If we discretize thez axis by zj = j δ, for j = 1, 2, . . . ,n and δ= 1/(n+ 1
2), we could

approximate the second-derivative operator∂2
z by the following matricesD2 andD4 [21],

for second and fourth orders of accuracy, respectively:

D2 = 1

δ2


−2 1

1
. . .

. . .

. . . −2 1
1 −1

 , D4 = 12


10 1

1
. . .

. . .

. . . 10 1
1 11


−1

D2.

To implement formulas (9), (11), (10), and (12), it is necessary to find the eigenvalue
decomposition for the matrix that approximates∂2

z + κ2(x1/2, z). Namely,

D4+


κ2

1

κ2
2
. . .

κ2
n

 = V3VT, (18)
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whereκ j = κ(x1/2, zj ), V is the orthogonal matrix of the eigenvectors, and3 is the diagonal
matrix of the eigenvalues. AfterV and3 are obtained, the following steps are used to
calculateQ0 andY0 from Q1 andY1:

S= VT Q1V,

P1 = (i
√
3+ S)−1(i

√
3− S),

P0 = eih
√
3P1eih

√
3,

W = (I − P0)(I + P0)
−1,

Q0 = iV
√
3W VT,

Y0 = Y1V(I + P1)e
ih
√
3(I + P0)

−1VT.

Since3 is a diagonal matrix, the matrices
√
3 andeih

√
3 are also diagonal matrices which

can be easily calculated. Clearly,O(n3) operations are needed in each range marching step.
Similar to the so-called coupled mode method [24, 25, 4, 8, 1], where the solution of

the Helmholtz equation is expanded in a truncated series ofx-dependent eigenfunctions of
the operator∂2

z + κ2(x, z), the above algorithm for marching the operatorsQ andY can
be much more efficient, if we consider only the firstm eigenvalues and eigenfunctions of
∂2

z + κ2(x, z). This approach is very effective, because the Helmholtz waveguide has only
a finite number of propagating modes (corresponding to positive eigenvalues of∂2

z + κ2)
and all the remaining eigenfunctions correspond to evanescent modes that decay exponen-
tially with increasingx for range-independent waveguides. For weakly range-dependent
waveguides, the coefficients of the evanescent modes are typically very small. Usually, it
is sufficient to choosem slightly lager than the number of propagating modes (i.e., positive
eigenvalues of∂2

z + κ2).
Let n be the number of points for discretizingz as before andm be the number of

retained modes in the truncated local eigenfunction expansion approach; the first step of
our method is to calculate them largest eigenvalues and the corresponding eigenfunctions
of ∂2

z + κ2(x1/2, z). The fully discretized version corresponds to the computation of them
eigenvalues andm eigenvectors of the matrix in (18). This gives rise toD4+

κ
2
1
. . .

κ2
n


Vm = Vm3m, (19)

where3m is them×m diagonal matrix of the largest eigenvalues, andVm is then×m
matrix of corresponding eigenvectors. Originally the operatorsQ andY are approximated
by n× n matrices andO(n3) operations are required in each step. In the new approach, we
look only at the images of these operators acting on the firstm eigenfunctions, projected
into the subspace spanned by thesem eigenfunctions. More precisely, we seek anm×m
matrix S0, such that

Q0Vm ≈ VmS0.

Similarly, for the input of this step(x0, x1), the operatorQ1 is related to anm×m matrix
S1. However,S1, being the result of the calculation of the previous step(x1, x2), must be
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related to them eigenfunctions of the operator∂2
z + κ2 for x= x3/2. But for the remaining

calculations of the step (fromx1 to x0), we need anm×m matrix for Q1 related to the
eigenfunctions atx= x1/2. If V (old)

m is the matrix ofm eigenvectors atx3/2, the relationship
we have is

Q1V (old)
m ≈ V (old)

m S1, (20)

whereS1 is the result of the previous step. We need to find anm×m matrix Ssuch that

Q1Vm ≈ VmS.

For this purpose, we expand the eigenvectors atx3/2 by the eigenvectors atx1/2, and then
truncate the result. This leads to

V (old)
m ≈ VmH.

Clearly, them×m matrix H is given by

H = VT
mV (old)

m .

Equation (20) is then approximated by

Q1VmH ≈ VmH S1.

This gives rise to

S= H S1H−1.

This is followed by the computation ofP1, P0, andW as in the full matrix method with3
replaced by3m. The matricesP1, P0, andW all have the smaller sizem×m. The step for
Q0 is replaced by the step forS0, with S0= i

√
3mW. Similar considerations apply to the

operatorY. We start withZ1 satisfying

Y1V (old)
m ≈ V (old)

m Z1

and calculateZ0 for Y0 satisfying

Y0Vm ≈ VmZ0.

The relationship betweenZ0 andZ1 is

Z0 = H Z1H−1(I + P1)e
ih
√
3m(I + P0)

−1,

whereP0 andP1 arem×m matrices used in the calculation ofS0 for Q0.
To summarize, we list the steps involved for marchingQ andY from x1 to x0 in the

truncated local eigenfunction expansion approach. The inputs are matricesS1 andZ1 cor-
responding to the projected images of the operatorsQ1 andY1 on the subspace spanned by
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the firstm eigenfunctions atx3/2, and the outputs areS0 and Z0 for operatorsQ0 andY0

and the eigenfunctions atx1/2:

H = VT
mV (old)

m ,

S= H S1H−1,

P1 = (i
√
3m + S)−1(i

√
3m − S),

P0 = eih
√
3m P1eih

√
3m,

W = (I − P0)(I + P0)
−1,

S0 = i
√
3mW,

Z0 = H Z1H−1(I + P1)e
ih
√
3m(I + P0)

−1.

5. FOURTH-ORDER LARGE STEP METHOD

The method developed in the previous sections is based on approximating the Helmholtz
waveguide by a stepwise range-independent waveguide. In each step, the wave numberκ

is approximated by its value at the midpoint (still a function ofz), and an exact formula
for marching the DtN map step by step is then derived. When the waveguide has a very
gradual range (i.e.,x) dependence, a large step size is possible. However, the range step size
is still limited by the variation of the waveguide in the range direction, since the stepwise
approximation leads to only second-order accuracy. In this section, we improve the capacity
of our large range step method by introducing a fourth-order method which still gives the
exact solution for a range-independent region. Our new method relies on a fourth-order
method for linear evolution equations developed in [20].

Consider the following linear evolution equation

yx = A(x)y, (21)

wherex is the usual “time” variable andA is some operator acting on functions of some
transverse variable, sayz. For a typical step fromx0 to x1= x0+ h, the midpoint exponential
method is

y1 = ehA(x1/2)y0, (22)

wherey0 is the given approximation ofy(x0), x1/2= x0+ h/2, andy1 gives a new approx-
imation for the solution atx1. That is,y1≈ y(x1), wherey(x1) is the exact solution of (21)
at x1. The method (22) is in general a second-order method, but it gives an exact solution if
A is x-independent on the step(x0, x1). If the operatorA is skew-self-adjoint (the adjoint
operator is simply−A), then the numerical solution, like the exact solution, preserves the
L2 norm, if proper boundary conditions are imposed. Namely,∫

|y1|2 dz=
∫
|y0|2 dz.

This is a desirable property, especially for the Schr¨odinger equation, whereA = i [∂2
z −

q(x, z)].
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A fourth-order method for (21) which retains the good properties of the second-order
midpoint exponential method is developed in [20]. It gives

y1 = e
h2

12A′ehA+ h3

24A′′e−
h2

12A′ y0, (23)

whereA,A′, andA′′ are all evaluated at the midpointx1/2= x0+ h/2. The methods (22) and
(23) are useful for evolution equations with highly oscillatory solutions and slowly varying
evolution operators. The step size is restricted by the variation of the evolution operator,
but is not restricted by the variation of the solution. The fourth-order method gives more
accurate solutions, without much increase of computational effort. For the Schr¨odinger
equation with a time-dependent potential, the fact that the derivatives of the operators are
functions simplifies the first and third exponential operators to function multiplications.

For the Helmholtz equation (1) and the related Riccati equation (2) of the DtN map, the
marching formulas (9), (11), (10), and (12) can also be derived based on (22). Letv= ux;
we write down the Helmholtz equation as the system

d

dx

[
u
v

]
=
[

0 I

−B2 0

][
u
v

]
, (24)

whereB=√∂2
z + κ2(x, z), and apply method (22) to system (24). This leads to[

u1

v1

]
= exp

(
h

[
0 I

−B2
1/2 0

])[
u0

v0

]
, (25)

whereu1, v1 andu0, v0 are the approximations ofu andv at x1 andx0, respectively, and
B1/2=

√
∂2

z + κ2(x1/2, z). From the definition of the DtN map, we have

v1 = Q1u1, v0 = Q0u0.

Plug the above relationships into (25); we could simplify the result and obtain (9), (11), and
(10) and the formula

u1 = (I + R̃1)e
ihB1/2(I + R̂0)

−1u0, (26)

which gives (12).
Because of its relevance to the fourth-order method later, we give a detailed derivation

here. We start with the diagonalization of the 2× 2 operator matrix[
0 I

−B2 0

]
=
[

I I

i B −i B

][
i B

−i B

][
I I

i B −i B

]−1

and evaluate the matrix exponential by

exp

(
h

[
0 I

−B2 0

])
=
[

I I

i B −i B

][
eihB

e−ihB

][
I I

i B −i B

]−1

.

Equation (25) then leads to[
I I

i B1/2 −i B1/2

]−1[ u1

Q1u1

]
=
[
eihB1/2

e−ihB1/2

][
I I

i B1/2 −i B1/2

]−1[ u0

Q0u0

]
.
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The inverse matrix above can be easily calculated,[
I I

i B −i B

]−1

= 1

2

[
I −i B−1

I i B−1

]
.

The above two equations give rise to[
I − i B−1

1/2Q1
]
u1 = eihB1/2

[
I − i B−1

1/2Q0
]
u0, (27)

eihB1/2
[
I + i B−1

1/2Q1
]
u1 =

[
I + i B−1

1/2Q0
]
u0. (28)

Therefore,[
I + i B−1

1/2Q0
][

I − i B−1
1/2Q0

]−1 = eihB1/2
[
I + i B−1

1/2Q1
][

I − i B−1
1/2Q1

]−1
eihB1/2.

Since [
I + i B−1

1/2Q1
][

I − i B−1
1/2Q1

]−1 = [I − i B−1
1/2Q1

]−1[
I + i B−1

1/2Q1
]

= [i B1/2+ Q1
]−1[−i B1/2+ Q1

] = R̃1,[
I + i B−1

1/2Q0
][

I − i B−1
1/2Q0

]−1 = [I − i B−1
1/2Q0

]−1[
I + i B−1

1/2Q0
]

= [i B1/2+ Q0
]−1[−i B1/2+ Q0

] = R̂0,

we obtainR̂0= eihB1/2 R̃1eihB1/2 and Eq. (10) forQ0.
With R̃1 andR̂0 defined above, we have

I + R̃1 = I + [i B1/2+ Q1]−1[i B1/2− Q1] = 2i [i B1/2+ Q1]−1B1/2.

Similarly,

(I + R̂0)
−1 = 1

2i
B−1

1/2[i B1/2+ Q0].

From (27), we have

[i B1/2+ Q1]u1 = eihB1/2[i B1/2+ Q0]u0.

Therefore,

u1 = [i B1/2+ Q1]−1eihB1/2[i B1/2+ Q0]u0

= (I + R̃1)B
−1
1/2eihB1/2 B1/2(I + R̂0)

−1u0

= (I + R̃1)e
ihB1/2(I + R̂0)

−1u0.

This leads to Eq. (26) and thus Eq. (12).
For the fourth-order method (23), we obtain[

u1

v1

]
= H exp

(
h

[
0 I

−∂2
z − κ2− h2

24(κ
2)xx 0

])
H−1

[
u0

v0

]
, (29)
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whereκ2 and its first and second derivatives are all evaluated at the midpointx1/2, and

H = exp

([
0 0

− h2

12(κ
2)x 0

])
.

It is easy to see that

H =
[

I 0

− h2

12(κ
2)x I

]
, H−1 =

[
I 0

h2

12(κ
2)x I

]
.

If we let

Q̃ j = Qj + h2

12

∂κ2

∂x

∣∣∣∣
x=x1/2

for j = 0, 1

and

B̃1/2 =
√
∂2

z +
[
κ2+ h2

24

∂2κ2

∂x2

]
x=x1/2

,

we obtain [
u1

Q̃1u1

]
= exp

(
h

[
0 I

−B̃
2
1/2 0

])[
u0

Q̃0u0

]
. (30)

Comparing the above and (25), it is clear that the fourth-order formulas for marchingQ
andY should be identical to the second-order ones ((9), (11), (10), and (12)), after the
substitution

Q0→ Q̃0, Q1→ Q̃1, B1/2→ B̃1/2.

To summarize, our fourth-order method proceeds from the givenQ1, Y1 at x1 to Q0, Y0

at x0= x1− h through the following steps:

1. CalculateQ̃1 and B̃1/2 by

Q̃1 = Q1+ h2

12

∂κ2

∂x

∣∣∣∣
x=x1/2

,

B̃1/2 =
√
∂2

z +
[
κ2+ h2

24

∂2κ2

∂x2

]
x=x1/2

.

2. CalculateR̃1 by

R̃1 =
[
i B̃1/2+ Q̃1

]−1[−i B̃1/2+ Q̃1

]
.

3. CalculateR̂0 by

R̂0 = eihB̃1/2 R̃1eihB̃1/2.
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4. CalculateQ̂0 andY0 by

Q̃0 = i B̃1/2[ I − R̂0][ I + R̂0]−1,

Y0 = Y1(I + R̃1)e
ihB̃1/2(I + R̂0)

−1.

5. CalculateQ0 by

Q0 = Q̃0−
h2

12

∂κ2

∂x

∣∣∣∣
x=x1/2

.

Therefore, the fourth-order method is achieved with very little extra work (in the first and
last steps). The difference with the second-order method is adding and subtracting the
derivatives ofκ2 to or from given operators.

For a direct numerical implementation based on approximating the operators byn× n
matrices, wheren is the number of points used to discretizez, the necessary modification for
the fourth-order method is minimal. We start with calculating the eigenvalue decomposition
of the matrix corresponding to∂2

z + κ2+ (h2/24)(κ2)xx. That is,

D4+
s1

. . .
sn

 = V3VT,

wheresj = κ2(x1/2, zj )+ (h2/24)(κ2)xx(x1/2, zj ), andV and3 are the matrices of eigen-
vectors and eigenvalues, respectively. The matrix representations ofQ0, Q1 and Q̃0, Q̃1

are related to each other by the following diagonal matrix:

F = h2

12
diag

[
(κ2)x(x1/2, z1), . . . , (κ

2)x(x1/2, zn)
]
.

Therefore, afterV and3 are calculated, we proceed as follows:

Q̃1 = Q1+ F,

S= VT Q̃1V,

P1 = (i
√
3+ S)−1(i

√
3− S),

P0 = eih
√
3P1eih

√
3,

W = (I − P0)(I + P0)
−1,

Q̃0 = iV
√
3W VT,

Y0 = Y1V(I + P1)e
ih
√
3(I + P0)

−1VT,

Q0 = Q̃0− F.

For the implementation based on the truncated local eigenfunction expansion, only the
first m eigenvalues and eigenvectors are needed,D4+

s1
. . .

sn

Vm = Vm3m,
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where3m is them×m diagonal matrix of them largest eigenvalues andVm is then×m
matrix of the corresponding eigenvectors. Similarly, in the previous step(x1, x2), we have
obtained a matrix ofmeigenvectors, denoted byV (old)

m , atx3/2. Since the operatorsQ1 andQ0

are represented by them×m matricesSandS0 for the subspace spanned by the columns of
Vm, it is necessary to calculate a similar matrix representation for the function(h2/12)(κ2)x.
For the diagonal matrixF given above, we look for anm×m matrix G, such that

FVm ≈ VmG.

This leads toG=VT
m FVm. Therefore, the operators̃Q1 and Q̃0 are represented byS+G

andS0−G, respectively. In summary, we have

H = VT
mV (old)

m ,

S= H S1H−1,

G = VmFVm,

S̃= S+ G,

P1 = (i
√
3m + S̃)−1(i

√
3m − S̃),

P0 = eih
√
3m P1eih

√
3m,

W = (I − P0)(I + P0)
−1,

S̃0 = i
√
3mW,

S0 = S̃0− G,

Z0 = H Z1H−1(I + P1)e
ih
√
3m(I + P0)

−1.

6. NUMERICAL EXAMPLES

To demonstrate the large range step capacity of our method, we consider the following
example whereκ is given by

κ2(x, z) = κ2
0

[
1+ 0.05e−20(x/L−0.5)2 sin2(πz)

]
.

We chooseκ0= 10 andL = 10. The second derivative inz is discretized by a fourth-order
finite difference method withn= 30.

At x= 0, we impose the following starting field:

u0(z) =
7∑

j=1

sin(mj z0) sin(mj z)/
√
κ2

0 −m2
j for mj = ( j − 1/2)π, z0 = 0.65.

The wave field atx= L is obtained byu(L , z)=Y(0)u0(z), whereY(0) is calculated by
solvingQ andY from x= L to x= 0. Since the range dependence of the waveguide is quite
weak, the transmitted wave is not very difficult to calculate. We first use a small range step
sizeh= 1/128 to calculate a very accurate solution for reference. After that, we calculate
the solution with much larger range steps and then compare them with the more accurate
reference solution. In Fig. 1, we plot the approximate solutions ofu(L , z) for h= 1 and
h= 1/128. We conclude that reasonably good solutions are already obtained withh= 1. In
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FIG. 1. Comparison ofu(L , z) for h= 1 andh= 1/128.

the following table, we list the relative errors of the numerical solutions ofu(L , z) obtained
by our fourth-order method with different choices of the range step size. The relative error is
calculated using the Euclidean norm for the vector at then differentzvalues (corresponding
to theL2 norm of functions ofz):

Step size h: 1 1/2 1/4 1/8 1/16

Relative error 0.010 0.0049 8.3E-6 2.6E-7 1.6E-8

In contrast, the relative errors of the second-order method are

1.04E-4, 2.51E-5, 6.14E-6

for h= 1/4, 1/8, and 1/16, respectively.
Since the waveguide has a very gradual range dependence, the back-scattered waves are

quite weak. Based on the DtN map atx= 0, i.e.,Q(0), we find the reflection operatorR(0)
and then multiplyR(0) on different incident waves to find their corresponding reflected
waves. As an example, we consider the back-scattering of the incident wave corresponding
to the third propagating mode:

u(i )(0, z) = sin(2.5πz).

In Fig. 2, the reflected wave calculated by the fourth-order method withh= 1/8 is compared
with a much more accurate solution obtained withh= 1/128. Although the magnitude is
only around 10−5, a reasonably accurate solution is already obtained withh= 1/8. In
contrast, we observe from Fig. 3 that the numerical solution based on the second-order
method has a much larger error.
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FIG. 2. The reflected wave calculated by the fourth-order method withh= 1/8 andh= 1/128.

FIG. 3. The reflected wave calculated by the second-order method withh= 1/8 and the fourth-order method
with h= 1/128.
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7. CONCLUSION

We have developed large range step methods for Helmholtz waveguides with a particularly
large range length scale and a slow variation in the range direction. As in [21], the one-way
re-formulation of the Helmholtz equation in terms of the DtN mapQ and the fundamental
solution operatorY is used. Such a one-way re-formulation is useful when the range length
scale is much larger than the transverse length scale of the waveguide, since numerical
methods developed based on these one-way re-formulations have memory requirements
independent of the total range distance and the computation time is linearly related to the
same distance. We notice that for many practical applications, medium properties of the
waveguide have a very gradual variation with the range variable, i.e., only very small changes
in a typical wavelength. Finite difference and finite element methods fail to take advantage
of this feature and a small step size in the range is required even when the waveguide
is range-independent. Typically, a few points are always required by these methods in
each wavelength to resolve the highly oscillatory wave field. On the other hand, when the
waveguide is range-independent, the equation is separable and its exact solution at any range
can be written down in terms of the eigenfunctions of the transverse operator. It is quite
natural that for nearly separable (slowly varying with range) waveguides, one approximates
the waveguide by a piecewise range-independent waveguide and patches the exact solution in
each piece together to obtain an approximate solution for the whole waveguide. The coupled
mode method [8] uses this approach by solving a global linear system for the coefficients
representing the exact solutions in each piece. Our method developed in Sections 3 and 4 also
uses the approximation of a piecewise range-independent waveguide. While the coupled
mode method uses the local eigenfunction expansion to write down the exact solutions in
each piece, we use the same expansion to reduce the operatorsQ andY to their images in
the eigenfunction space. Since the waveguide supports only a finite number of propagating
modes, good approximation is possible when the eigenfunction expansion is truncated with
a relatively small number of terms. Because of the one-way re-formulation used in our
methods, the operators are marched in the range as an initial value problem, avoiding the
large linear system appearing in the coupled mode method.

The drawback of the coupled mode method [8] and our method in Sections 3 and 4 is the
low order of accuracy associated with the approximation of a range-dependent waveguide
by a piecewise range-independent one. Such an approximation typically leads to a second
order of accuracy, so the range step size is still limited by the variation of the waveguide in the
range variable. Our method developed in Section 5 is a fourth-order method that preserves
the good properties of the second-order method. Namely, for a range-independent piece,
the fourth-order formulas for matchingQ and Y are still exact. This improved method
is related to a fourth-order conservative exponential method developed in [20] for highly
oscillatory evolution equations such as the Schr¨odinger equation. Finally, our fourth-order
method requires very little extra work compared with the original second-order method.
The advantage of this method is verified by numerical experiments in Section 6.
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